

1

Dr Hilding Elmqvist
CEO Mogram AB and Technical Fellow Modelon AB

Prof Martin Otter
DLR, Institute of System Dynamics and Control

Modia – A Prototyping Platform for Next Generation
Modeling And Simulation Based on Julia

Outline

 Motivation - The Modia project

 Introduction to Modia language

 Modiator web app

 ModiaMedia

 Symbolic algorithms

 Summary

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

2

Modelica Challenges

 Modelica is powerful (equations, objects, connections)
 Although static, requiring recompilation if:

 An array dimension is changing
 A component class is changing
 A medium is changing

 Modelica algorithms and functions lack functionalities:
 Modern data structures
 Parallelization
 …

 It is possible to build complex system models, but:
 Sometimes hard to understand models (3D, media/fluid models, …)
 Translation should be faster
 Simulation should be faster

• Dynamic typing, Matlab-like notation

• Static typing, efficient, data structures (as C++)

• Multiple dispatch

• Metaprogramming

• for domain specific language extensions

• for symbolic processing

• Just-in-time compilation

Innovation platform - Modia

Based on modern language – Julia

Modia Equation-based modeling

Modiator 2D/3D model editor

ModiaMath Simulation environment

Modia3D 3D geometry and 3D mechanics

ModiaMedia Thermodynamic property models

Modelia Modelica model importer (partial)

Open source project consisting of several
Julia packages (github.com/ModiaSim)

Contributors:
Hilding Elmqvist, Toivo Henningsson, Martin Otter,
Andrea Neumayr, Oskar Åström, Chris Laughman

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

3

Connectors and Components - Electrical
@model Pin begin
 v=Float()
 i=Float(flow=true)
end

@model OnePort begin
 p=Pin()
 n=Pin()
 v=Float()
 i=Float()
@equations begin
 v = p.v - n.v # Voltage drop
 0 = p.i + n.i # KCL within component
 i = p.i
 end
end

@model Resistor begin # Ideal linear electrical resistor
 @extends OnePort()
 @inherits i, v
 R=1 # Resistance
@equations begin
 R*i = v
 end
end

connector Pin
 Modelica.SIunits.Voltage v;
 flow Modelica.SIunits.Current I;
end Pin;

partial model OnePort
 SI.Voltage v;
 SI.Current i;
 PositivePin p;
 NegativePin n;
equation
 v = p.v - n.v;
 0 = p.i + n.i;
 i = p.i;
end OnePort;

model Resistor
 parameter Modelica.SIunits.Resistance R;
 extends Modelica.Electrical.Analog.Interfaces.OnePort;
equation
 v = R*i;
end Resistor;

Modelica

Elmqvist/Henningsson/Otter 2017: Innovations for Future Modelica

Coupled Models - Electrical Circuit
@model LPfilter begin

 R = Resistor(R=100)

 C = Capacitor(C=0.001)

 V = ConstantVoltage(V=10)

@equations begin

 connect(R.n, C.p)

 connect(R.p, V.p)

 connect(V.n, C.n)

 end

end

model LPfilter

 Resistor R(R=100);

 Capacitor C(C=0.001);

 ConstantVoltage V(V=10);

 Ground ground;

equation

 connect(R.n, C.p);

 connect(R.p, V.p);

 connect(V.n, C.n);

 connect(V.n, ground.p);

end Lpfilter;

Modelica

ground

R=100

R

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

http://www.ep.liu.se/ecp/article.asp?issue=132%26article=76
http://www.ep.liu.se/ecp/article.asp?issue=132%26article=76

4

Modiator – web app

 Summer 2019 prototype

 Summer intern: Oskar Åström

 Joint project between Modelon and Mogram

 Cooperation with Martin Otter, DLR

 Modelica diagrams

 Exploring fundamentals
 CSG – Constructive Solid Modeling
 Shape parametrization

 Focus: 3D model composition and animation
 Modia3D
 Modelica…MultiBody

3D model composition

• Mechanism composition
• Introducing joints
• Parametrization
• Immediate kinematic

animation
• Exploded view

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

5

3D Animation

• Generate Modia3D model

 Determine properties from
geometries (mass, ...)

 3D mechanics algorithms
 Collision handling
 Fast translation

• Client/server communication
between web app and Julia

• Simulate
• Animate result in Modiator

Modelica Multibody 3D parametric preview

• Kinematic animation
• Parametric animation
• Spanning tree view
• Interpretation of Modelica AST
• Evaluation of Modelica expressions

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

6

ModiaMedia - Thermodynamic property models

using ModiaMedia

Medium = getMedium("N2") # dictionary

p = 1e5
T = 300.0
state = setState_pT(Medium, p, T) # construct
setState_pT!(state, 2*p, 2*T) # update

d = density(state # get other properties)
h = specificEnthalpy(state)

listMedia() # list all supported media
standardPlot(Medium) # plot Medium

• Much simpler and more powerful as Modelica.Media

• Fluid network: state propagated/updated along connection structure

 (Medium defined at one state instance)

Developers: Martin Otter (DLR), Hilding Elmqvist (Mogram), Chris Laughman (MERL); Paper at Modelica‘2019

Symbolic Algorithms

• For 𝟎 = 𝐟 𝐱 , 𝐱, 𝑡

• Can be used directly in current Modelica tools

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

http://www.ep.liu.se/ecp/article.asp?issue=157&article=060&volume=

7

Modelica translation today - flattening

 Object-oriented modeling approach
 allows building large models with millions of equations

 Semantic specification is based on flattening
 i.e. cloning variables and equations of each component instance

 And most tools also expands matrix equations

Negative consequences:
 A lot of memory is needed for variables and equations during translation
 Translation time is unnecessary long

 same analysis (flattening, symbolic processing, etc) is performed repeatedly for each
instance of a component

 C-code gets large and compilation takes long time

16

Remedy: Separate Translation

 Parts of the equations of a component
 are always executed in the same order and with the same causality

 independently of how the component is connected

 Such sequences of equations can be put into functions
 which are reused for all components of the same class

 less C-code gives shorter compilation time

 Finding such sequences can be made once for each model class
 faster translation and less memory use

17

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

8

Component Model Equations
DAE:

𝑓(𝑥 , 𝑥, 𝑐𝑝 , 𝑐𝑓 , 𝑢, 𝑦, 𝑣, 𝑝)=0
 𝑥 – differentiated variables
 𝑐𝑝 – potentials of the connectors
 𝑐𝑓 – flows and streams of the connectors
 u – inputs
 y – outputs
 v – other variables
 p – parameters
 dim(𝑓) = dim(𝑥)+dim(𝑐𝑝)+dim(𝑦)+dim(𝑣)

Generic environment of model:

 Generic environment needs to relate all connector variables

 𝑔(𝑐𝑝, 𝑐𝑓 , 𝑢, 𝑦)=0
 dim(𝑔) = dim(𝑐𝑓)+dim(𝑢)
 𝑔 has full incidence

 Might also contain derivatives

Model equations partitioning

 First blocks (always same causality, use function):
 𝑥 1, 𝑦1, 𝑣1 = 𝑓1(𝒙, 𝒑)

 Middle block (𝑓2 kept as equations):
 𝑔(𝑐𝑝, 𝑐𝑓 , 𝑢, 𝑦)=0

 𝑓2(𝒙 𝟏, 𝑥 2, 𝒙, 𝑐𝑝, 𝑐𝑓 , 𝑢, 𝒚𝟏, 𝑦2, 𝒗𝟏, 𝑣2, 𝒑)=0

 Last blocks (always same causality, use function):
 𝑥 3, 𝑦3, 𝑣3=𝑓3(𝒙 𝟏, 𝒙 𝟐, 𝒙, 𝒄𝒑, 𝒄𝒇, 𝒖, 𝒚𝟏, 𝒚𝟐, 𝒗𝟏, 𝒗𝟐, 𝒑)

f1

g, f2

f3

𝑐𝑝 , 𝑐𝑓 , 𝑢

Known variables marked in bold face

Perform BLT on f and g function incidences

Since g has full incidence, all g-equations
will appear in the same block

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

9

Example: Heat exchanger model

MSL BasicHX

 flow models close to connectors

 10 spatial segments

 50 dynamic states

 514 equations

 dim(f2) = 24

g

f3

f1

f2

name

Example: Multibody Robot model

MSL Robot with der(phi)

 With der(phi) in g(…)
to enable connecting dampers

 12 dynamic states

 391 equations

 dim(f2) = 0

 Modia3D is a manual
implementation of this approach

g

f3

world

x

y

a b

n={1,0,0}
r2

a b

n={1,0,0}
r3

a b

n={1,0,0}
r5

axis1

axis2

axis3

axis4

axis5

axis6

f1

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

10

Separate Translation - Summary

 Systematic method for splitting model equations into acausal and
causal partitions
 User does not need to consider which equations can be moved to functions

 Local index reduction is performed

 Global index reduction requires automatic differentiation of the functions

 Limited testing shows that substantial part of the equations can be
moved to separately compiled functions

 Less time and memory for both translation and simulation

 This approach could be combined into a generalized FMU.

Index Reduction of Array Equations

 Structural algorithm to reduce DAE index to 0 (= solve state constraints)

 Often: Pantelides 1988.

 Map scalar equations → scalar equations
(array properties lost during transformation)

Core algorithm in Modelica tools

BLT Block 1 solve for

 𝐮 = −(𝑐𝑠 + 𝑑𝑠)𝐧 𝐮

BLT Block 2
 BLT Block 2.1

 𝐫 = 𝐧𝑠 𝑠, 𝐫

 BLT Block 2.2

 𝐫 = 𝐧𝑠
𝐯 = 𝐫 𝑠 , 𝐫 , 𝐯

 BLT Block 2.3

 𝐫 = 𝐧𝑠
𝐯 = 𝐫

𝑚𝐯 = 𝐟 + 𝑚𝐠+ 𝐮
𝟎 = 𝐧 ∙ 𝐟

𝑠 , 𝐫 , 𝐯 , 𝐟

New algorithm Otter, Elmqvist 2017 (section 3)

 Generalization of Pantelides 1988

 Map array equations → array equations

 More efficient machine code possible

𝐫 = 𝐧𝑠
𝐯 = 𝐫

𝑚𝐯 = 𝐟 + 𝑚𝐠 + 𝐮
0 = 𝐧 ∙ 𝐟
𝐮 = −(𝑐𝑠 + 𝑑𝑠)𝐧

Example

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

https://epubs.siam.org/doi/10.1137/0909014
http://www.ep.liu.se/ecp/article.asp?issue=132%26article=64

11

Tearing with retained solution space

𝟎 = 𝒈 𝒛
𝒛𝑒 ∶= 𝒈𝑒 𝒛𝑒, 𝒛𝑡
 0 = 𝒈𝑟 𝒛𝑒 , 𝒛𝑡

𝒛 = [𝒛𝑒, 𝒛𝑡]
solve explicitly as much

as possible, without

changing solution space

 Reduce the size of algebraic equation systems
 Reduce number of states

New algorithm:
 Otter, Elmqvist 1999 (unpublished) +
 Bender, Fineman, Gilbert, Tarjan 2016 (incremental cycle detection in DAGs)
 → Otter, Elmqvist 2017 (section 4.6)
 O(n) ≤ tearing ≤ O(nm)
 Example: Loop with 1 million equations → 1 equation (needs 2s)

𝑧1 = 𝑓1 𝑧4
𝑧2 = 𝑓2 𝑧1,𝑧5
𝑧3 = 𝑓3 𝑧2, 𝑧1
𝑧4 = 𝑓4 𝑧3, 𝑧2

Core algorithm in Modelica tools

 input: 𝑧4
output: 𝑟
𝑧1 ≔ 𝑓1 𝑧4
𝑧2 ≔ 𝑓2 𝑧1,𝑧5
𝑧3 ≔ 𝑓3 𝑧2, 𝑧1
𝑟 = 𝑧4 − 𝑓4 𝑧3, 𝑧2

Example

Exact Removal of Singularities

Modelica tools can fail on well-defined models:

 Structurally singular at compile-time

 Singular Jacobian at run-time

New algorithm Otter, Elmqvist 2017 (section 5)

 Extract all linear equations with Integer coefficients

from DAE system (e.g.: 0 = 𝑖1 + 𝑖2; 𝑢𝑟𝑒𝑙 = 𝑢2 − 𝑢1):

→ 𝐀 ∙ 𝒙 = 𝐁, 𝐀 ϵ ℤ𝑛𝑎1 𝑥 𝑛𝑎2, 𝐁 ϵ ℤ𝑛𝑎1 𝑥 𝑛𝑏2

 Remove all singularities exactly!!!

 Use as pre-processing step

− Remove redundant equation:

 -L2.n.i - V.n.i = 0

− Make potentials well-defined

by adding equation:

 L2.n.v = 0

− Make state constraints structurally

visible by replacing

 -R1.p.i - R2.p.i - L1.n.i = 0

with

 -L1.p.i + L2.p.i = 0

Example

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

https://dl.acm.org/citation.cfm?id=2756553
https://dl.acm.org/citation.cfm?id=2756553
https://dl.acm.org/citation.cfm?id=2756553
http://www.ep.liu.se/ecp/article.asp?issue=132%26article=64
http://www.ep.liu.se/ecp/article.asp?issue=132%26article=64
http://www.ep.liu.se/ecp/article.asp?issue=132%26article=64
http://www.ep.liu.se/ecp/article.asp?issue=132%26article=64
http://www.ep.liu.se/ecp/article.asp?issue=132%26article=64
http://www.ep.liu.se/ecp/article.asp?issue=132%26article=64

12

No dynamic state selection

Free Body Rotation (with quaternions)

𝝎 = 2

𝑞4 𝑞3 −𝑞2
−𝑞3 𝑞4 𝑞1
𝑞2 −𝑞1 𝑞4

−𝑞1
−𝑞2
−𝑞3

∙ 𝒒

𝝉 𝑡 = 𝑰𝝎 + 𝝎 × 𝑰
1 = 𝒒𝑻𝒒

Modelica tools transform 𝟎 = 𝐟1 (𝐱, 𝐱, 𝑡)

(conceptually) to index 0 form: 𝒙 𝑟𝑒𝑑 = 𝐟2(𝐱𝑟𝑒𝑑 , 𝑡)

 Sparseness of 𝐟1 might get lost

 Might require dynamic state selection

(𝐱𝑟𝑒𝑑 changed during simulation; might not work well)

𝜕𝐟𝑑
𝜕𝐱 𝑟𝑒𝑑
𝜕𝐟𝑐
𝜕𝐱𝑟𝑒𝑑

 is regular
𝐟𝑑 𝒙 𝑟𝑒𝑑 , 𝐱𝑟𝑒𝑑 , 𝑡

𝐟𝑐 𝐱𝑟𝑒𝑑 , 𝑡
= 𝟎

Transform to special index 1 form

New proposal Otter, Elmqvist 2017

 Sparseness is not changed

 No dynamic state selection

− Directly integrate equations
(already in special index 1 form)

− Initialization/events:
• new 𝐱𝑟𝑒𝑑: use Dirac impulse

• new 𝒙 𝑟𝑒𝑑: use
𝑑

𝑑𝑡
1 = 𝒒𝑻𝒒

Example

No dynamic state selection - examples

𝝎 = 2

𝑞4 𝑞3 −𝑞2
−𝑞3 𝑞4 𝑞1
𝑞2 −𝑞1 𝑞4

−𝑞1
−𝑞2
−𝑞3

∙ 𝒒

𝝉 𝑡 = 𝑰𝝎 + 𝝎 × 𝑰
1 = 𝒒𝑻𝒒

Body attached with spherical joint to ground
(= 7 equations)

Modia about 40 % faster as a Modelica tool:
• Modelica: index 0 DAE, changing states, DASSL, 4000 model calls
• Modia : index 1 DAE, fixed states , IDA , 2700 model calls

16 free flying bodies à 13 states = 208 states
≈ 200 possible collision pairs

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

http://www.ep.liu.se/ecp/article.asp?issue=132%26article=64
http://www.ep.liu.se/ecp/article.asp?issue=132%26article=64
http://www.ep.liu.se/ecp/article.asp?issue=132%26article=64

13

Multi-mode systems with impulses

0 = if engaged then 𝜔𝑟𝑒𝑙 else 𝜏1

ideal clutch

Dirac impulse

Previous multi-mode attempts of limited use:

 Changing structure can lead to index change + Dirac impulse

 Not supported by Modelica tools

New proposal
Benveniste, Caillaud, Elmqvist, Ghorbal, Otter, Pouzet 2019
 Multi-Mode DAE Models: Challenges, Theory and Implementation

Requirement: Special index 1 form linear in derivatives (+ other req.)

0 =
𝑨 𝒙, 𝑡 𝒙 + 𝒃 𝒙, 𝑡

𝒇𝑐 𝒙, 𝑡

(= 𝒇𝑑(𝒙 , 𝒙, 𝑡))

Compute 𝒙+ from 𝒙− at 𝑡𝑒𝑣𝑒𝑛𝑡:

0 =
𝑨 𝒙+, 𝑡𝑒𝑣𝑒𝑛𝑡 (𝒙+ − 𝒙−)

𝒇𝑐 𝒙+, 𝑡𝑒𝑣𝑒𝑛𝑡
→ 𝒙+ implicit Euler ℎ → 0

If index 0 ↔ 1: without re-compilation

Example

or

(hard)

Summary

 Modelica needs better scalability
 since users need to simulate more and more complex product designs

 The Modia project provides freedom for innovation

 Several new algorithms have been designed and tested
 could be integrated in Modelica tools

 New user experiences are evaluated

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

https://link.springer.com/content/pdf/10.1007/978-3-319-91908-9_16.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-91908-9_16.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-91908-9_16.pdf

