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Model based diagnosis, basic idea

Structural analysis for fault diagnosis i £ |
of equation based models

observation y(t) N\ residual 7(t)
+

actuators u(t)

Erik Frisk <erik frisk@liu.se> Industrial applications often more difficult ...

Department of Electrical Engineering
Linkdping University, Sweden

* Models are complex, non-linear, includes lookup-tables, to big to handle
by hand, ...

+ Fault isolation, not only fault detection

* Models are uncertain, which, by definition is not modeled

I LINKOPING Jubilee Symposium — Future Directions of System Modeling and Simulation
I.u UNIVERSITY Sept. 30, Lund, Sweden Il. LoD,
Modeling languages N A Matlab toolbox - faultdiagnosistoolbox.github.io
" D I] E L I.c A SIMUIJINK Fault Diagnosis Toolbox Download & Instal Tutornials Use Case References About

+ Simulink and Modelica are used (in industry)
for l Models ’

* Mainly simulation

+ optimization
* not so much for diagnosis analysis and
design

* Support for Simulink and Modelica would
make methods industrially more accessible

Main designer, coding, and algorithms
Erik Frisk (http://users.isy.liu.se/fs/frisk/) <erik.frisk@liu.se>
Professor, Linképing University, Sweden

* We in Linképing has thought about this for
some time; diagnostic methods useful for such

models Coding and algorithms

Mattias Krysander (http://users.isy.liu.se/fs/matkr/) <mattias.krysander@liu.se>
Associate professor, Linkdping University, Sweden

* Maybe have to compromise between general
applicability and optimality/guarantees/...
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Basic approach to diagnosis system design

Model

Sub-model
With
Redundancy

Residual
Generator
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DAEs and equation based models for diagnosis

* Non-causal models — inherent in the diagnosis problem

A signal is known or unknown; it does not matter if it is an input or
output signal to the system

* X, Z, f— unknown, known, and fault signals
F(x,x,2,f)=0

* Submodels — inherently differential-algebraic

X =10, %0, 2, f)

Xy = folx1, %2, 2, f)

yi = h(x, 0,2, f)

Yo = hy(xy, %5, 2, f)

Xy = fi0x, X0, 2, f)
1 =h(xy, x5, 2, f)
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Differential index and diagnosis filter design

+ Standard definition on differential index is for just-determined models but
can be directly extended to over-determined models, i.e., models with

redundancy,
X = filx, X%, 2, f)

yi = (x5, 2, )
+ If sub-model is low-index, standard observer design techniques can be
utilized for a fault detector in the form
X =8/(X, %, 2) + KgAX, %, 2)
0= g,(%,%5,2)
r=g,.x,%,2)
+ Thus low-index sub-models are of particular interest for detector synthesis
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Structural models

A structural model only models that variables are related! I

Example relating variables: V/, i, w

. di .
e : V:IR(1+fR)+LE+KaIw
Unknown variables
i 6w a T Tm Tilfr fi fu |V ¥ yo yr
e ‘ X X ‘ X ‘ X

= Coarse model description, no parameters or analytical expressions
= Can be obtained early in design process with little engineering effort
= Large-scale model analysis possible using graph theoretical tools

= Very useful!

LINKOPINGS
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Throttle

Structural representation of engine model

Engine model
. Air filter oy

e

Intercooler

O
% O
2SO
~RS 5

Intake Exhaust Wastegate Exhaust
manifold Engine manifold system

+ Incidence matrix of variable
dependency graph

» Edges represents connections

» I/D-edges correspond to =
differentiation and integration H
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Fundamental algorithmic tool: Duimage-Mendelsohn decomposition

Xo XX o X X Xo
* Basic tool in many structural
analysis algorithms M=
e Smart reorderingor 00— f=y "
rows(equations) and columns
(variables) ()

* Partitions the model into three
parts

* Under determined

» Exactly determined

* Over determined
» The overdetermined part with M
redundancy is the one interesting
for diagnosis
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Outline of the talk

1. Diagnosability and sensor placement analysis
2. Testable (sub-)models and detector synthesis
3. A Modelica perspective
4. An automotive use-case

| Presentation will be more what than how

LINKOPINGS
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Diagnosability analysis and sensor selection
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13 14
Diagnosability analysis - Problem formulation Structurally detectable and isolable faults
) Engine model
* Given a dynamic model “ « Let e, be the equation that is affected by fault f;
+ Q1: Which faults are T . R U SUTES WY A S
structurally detectable? « Afaultfis (structurally) detectable iff . o |
* Q2: What are the structural e € M* S f
isolability properties of the ) " © i !
model? « Fault f] not detectable, f, is detectable M Po® 1 !
! i ) | 1
« Afaultf;is isolable form a fault f; iff | ! ® L‘J ! |
+ Mo i TTNY i
) efi € (M\efj) M, i i 7777777777777 @ |
+ Take home: Structural diagnosability canbe |
. determined by a series of e (34 )
ke = I Dulmage-Mendelsohn decompositions (fast) |
5§ o T o F = - B . e
[ KT REE [ KTREE
15 . . . 16
Diagnosability of an engine model A more detailed structure decomposition
Duli ition of model 'SECS' Dul ition of model 'SECS'
Isolability matrix for 'Engine model" " ‘ E ‘ . T ‘ ‘ ‘ :0 L ' T ' ' I ' ' T T
fo_at . 100 100 -
fuaf L4 200 | Zz :
: fw_th [ ] 250 |
= w_c [ ) 300 - 300 F
-T:— ‘V Compressol ﬂ fevol ° 350 - q
= o] g 400 g 400
Q i [ J T T 450
4+ = 3
Turbine Q [ ] L 500 T 500 -
5 . 550
- — fyw_af ® 4 17! P —=—=——7
T c 600 (— 600
$ o = fpim [ S 650
i = £
_""f“f"‘ Engine [x_').t\,".l Wastegate [)(h:ms! fyp_ic [ ] 700 700 -
anifol manifold system Wi ° 750 |
foaf fwaf futh fuc fovol fut bthfwafyp imbpichic )\ L P ‘r’i 20 Zzz
D | a g noses 0 100200 300 CZ?wab\eZOO 600 700 800 0 50 100150 200 250 300 350 c(;(:gz?ezoo 550 600 650 700 750 800 850
[ KT REE [ KTREE
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Isolability and a more detailed structure decomposition”

500

of model 'SECS'

N @
S o
3 3

Equations

~
a
3

500 550 600 650 700 750 800
Variables

Injected fault

Isolability matrix

f21f22 f1 15 {7 f8 f2 f3 f4 f6 f9 f17f10f11f12f13f16f14115f18f19f20
Interpreted faults
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Minimal sensor sets and problem formulation

Given:
= A set P of possible sensor locations

= A detectability and isolability performance specification

MINIMAL SENSOR SET

A multiset S, defined on P, is a minimal sensor set if the specification is
fulfilled when the sensors in S are added, but not fulfilled when any proper
subset is added.

4

PROBLEM STATEMENT

Find all minimal sensor sets with respect to a required isolability
specification and possible sensor locations for any linear
differential-algebraic model

A,
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Basic principle for finding sensors

€1

[

€3

€4

€5

eg

LT Y S 7R

b

1

!

ba

N

by

—

1. A Dulmage-Mendelsohn decomposition (again)
2. Define a partial order on equations that explicitly identifies variables to

measure
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Example: An electrical circuit

A small electrical circuit with 5 components that may fail

z 1
@ —_—
L Ry
== Yy AN
4 2
Ry c
I3 H 5
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UNIVERSITET




Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

Example: An electrical circuit 2

A small electrical circuit with 5 components that may fail

Examples of results of the analysis

& (D

=/

z

o I

N/ —

Vi = Vs Vs = V2 + V3
L q’%\ I R e A e R Ry
4 YV vi=2z vo = Rih
d d p—
R2 vy = L—i i5 = C—w -
C 4 il 5 P
i 3 ‘ ‘ 5 V3= v v3 = Raiz o Example run.l -
B ‘ ‘ — Objective Achieve detectability
Possible measurement voltages and currents
7 minimal solutions
= 10 equations, 2 states, 5 faults, 1 known signal
. i, is }t,{i3, 5}, {ia, is}, {is, va}, {is, v}, {is, va
= Possible measurements: currents and voltages -’{ i}, {3, i}, {ia, i}, {is, val U, va}, {5, val
I oo
Examples of results of the analysis 2 Ezxamples of results of the analysis “

A
D ()
O—</

Example run 2
Objective Achieve full isolability
Possible measurement voltages and currents

5 minimal solutions

-, {ir,ia}, {2, i3, 05}, {i2, ia, is}, {13, ia, is } J

II LINKOPINGS
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Example run 3

Objective Achieve full isolability, new sensors may fail
Possible measurement  voltages and currents

7 minimal solutions

-7 {it, i1, ia}, {in, 3,05}, {1, ia, i},

{ia, 3,5, i5 }, {i2, ia, i5, i5 }, {13, ia, 5, i5 }

II LINKOPINGS
L) UNIVERSITET
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Testable sub-models and detector synthesis

26

Model based diagnosis, basic ideas

faults £(t)

observation y(t) N\ residual r(t)
+

1 P~

actuators u(t)

y = h(z,u)
Model [—————
Sub-model b
ub-mode Residual
with G A
Redundancy -

LINKOPING
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. . . . .7 . 27
Basic principle - systematic utilization of redundancy

1 equation, 1 unknown, no redundancy J

x = g(u)

LINKOPINGS
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Basic principle - systematic utilization of redundancy

2 equations, 1 unknown, 1 residual generator J
x = g(u) n=y —gu)
yn=x

LINKOPINGS
I I." UNIVERSITET
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‘ o . o : 2
Basic principle - systematic utilization of redundancy

3 equations, 1 unknown, 3 residual generators J
x = g(u) n=y —gu)
y=x r=y —g(uv)
Y2 =x nR=Y2=-xn
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Basic principle - systematic utilization of redundancy

4 equations, 1 unknown, 6 (minimal) residual generators J
x = g(u) n=y —g(u)
yi=x rn=y —g(u)
Y2 =X R=Yy2=—x
ys =X s =ys—g(u)
s =Yy3—n
e =Yy3— Y2

LINKOPINGS
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Basic principle - systematic utilization of redundancy

4 equations, 1 unknown, 6 (minimal) residual generators J
x = g(u) n=y —g(u)
y=x r =y —g(u)
Y2 =X nR=y2—xn
y3 =X r=ys—g(u)
s =Yy3—y1
o=y3—y
| Answer:

Very much so, but careful

= Number of possibilities grows exponentially (here| analysis of DAE equations and
combinations) their properties is essential I

= Not just y — y
= |s this illustration relevant for more Eeneral cases?

Lu
[T pre

32

Basic approach to diagnosis system design

| How do you

Sub-model
With
Redundancy

u do this step?

Residual
Generator

LINKOPING
Il.u UNIVERSITY




Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

Sketch - how to find all minimal models with redundancy

Model

M+ Sub-model M+

m “ Sub-model

Minimal model
with redundancy

+ Do this systematically; efficient way to find all MSO sets — Minimal
Structurally Overdetermined set of equations

+ A series of Dulmage-Mendelsohn operations — efficient

+ Exponential in model redundancy — extensions for MSO exists to reduce
solution set

LINKOPINGS
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A Modelica perspective

5

Is Modelica a good language for this kind of unalysisa

+ Started two masters theses together with Saab, Linképing

» Demonstrate automatic transformation of Modelica models into a format
where existing fault diagnosis techniques are applicable.

 Describe how to make non-trivial diagnosis analysis for non-trivial
Modelica models.

VAL

MODELICA

II LINKOPING
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6

Use-case: Environmental Cooling System for Gripen Aircraft
I—— .

* Modelica model
« Uses standard libraries
* 1,000 - 10,000 equations

15 SEnsors
(temp, pres, rot)

LINKOPING
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37 38
Modelica and structural analysis Toolchain
(" . . . Structural model . XML XML to FDT- Analysis i
if * Flat Modelica model is Well suited f Wlatlalicz representation formatoparser rl:j:aﬁ:bm
{ for structural analysis
+ Structural analysis requires non- 0l ¢ <SimpleEquation>
. 3 ComponentReference:
repeated expressions <§ncﬁrcn§ _ />
300 instanceName="y" />
+ Connecting components give, by - L emponentHeference>
construction, non-repeated g sy Operator—r +7>
expressions if the model is not o0 v S omponentReterence>
simplified. " | y=x+1 . SontanecNeme="s" />
. H ] N </ComponentReference>
+ State-space forms are typically not . O B B gLl
suitable Lol X oy T e Welue= >
NN H e
0 I(;O 2[;0 3(;0 4(‘)3 bl560 650 7(‘7"(’] e m;gom -!;(;0 o </S“n])leEq“anﬂn>
[ KT REE [ KTREE
39 40
Modelica model with faults Transformation: .mo = XML = .m
ek s | A few hundred lines of
12 Python-code
f13
|
g — <
Matlab <\
f14
*inn
LS Straightforward to extend existing components with fault models LS
[T [ KT




Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

Equations

/ Structural model 42
Conditionals Model structure N
* Very common with conditionals in more complex models * Gripen Environmental o
« Common in the ECS model here Cooling System model X
« Related to hybrid/switched systems * 384 eq}latio?s, 23 ]
] . namic states 0 e
» Here a simple, and pragmatic approach 2Z fault 5§40 )
* au S g [N
Degree of redund 4]
if ¢(z.) > 0 then egree of redundancy 15 E
— . . 600 A
2 elsxé = g1(w2); xr1 = 1f(C([L‘C) > 0591 (.%’2); g2 (3327 373)) ‘ Ny
700 NPILS
1z = ga(xa,w3); — T To.X . s
end if, f< C’ 2 3) 800 \'::' A : :_,
NN, N
W me w0 0 o an 7o s w0
Variables
[ KT REE [ KTREE
13 44

Isolability from structure

Duli of model 'SECS' Isolability matrix
500 T T T : T T T
[ 34
[ 1)
650 - " )
5 1 [ ]
700 - 3" 44
g f7 o0
<€ f10 [ ]
11 [ ]
750 - f2 Y
f13 o0
- 16 o0
800 = — — f14 [
15 [ ]
. 18
850 — 19
c 120
00

@

700

Variables Interpreted faults

f1f22 1 15 {7 18 f2 13 f4 f6 {9 f17f10f11{12{13f16{14f15{18{19f20
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Number of equations

300

250

»
5
8

@
8

Residual generator properties

Wl 4states
[ astates
LIEE  1states
B ostates

redundancy 2

redundancy 2

redundancy 2

PSO set

Test selection to achieve maximum single fault
isolability by a Greedy search:

1) Few states 2) Few equations
10 tests with maximum single fault isolability

Fault signature matrix
T

L e e L e e e e

. o . 4

o e 4

o . . -

. . . . -

. o e o e e e -

. 4

o . -

. o e e e e e . . . -

. e e e e e e e e -

. o e o o o o . DY -
I I

S S S R S S R R R
19 110 f11 112 113 14 15 16 117 118 f19 f20 f21 f22

\_
sl

P L
f1 f2 f3 f4 f5 f6 f
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45
Summary
+ Straightforward to transfer Modelica models to analysis format (Matlab)
» Here a limited part of the Modelica language
 Toolchain via XML representation (unfortunately, not standardized)

Modelica 2L XML to FDT- Analysis in
4l representation y format parser y Matlab

+ Possible to obtain non-trivial results

+ Fault detectability, fault isolability, fault detector analysis
 Saab developers also appreciate:

* Gain additional insight in model structure

» Find model weaknesses using fault diagnosis techniques

II LINKOPING
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An automotive use-case

Volvo development control system

We can inject, physically and through the
control system, many relevant faults
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Test cell data

* Volvo production engine

« EPA HWFET cycle translated into load

cycle for engine (rpm/torque)
* (here) 5 data sets:
1. Fault free
+ Sensor faults
« 2. Intake pressure
3. Air-flow sensor

* 4. Pressure after intercooler
+ 5. Temperature after intercooler

Velocity km/h]

49

Structural model of the engine

{ Matlab code }

- >>model
| Model: Engine model

‘ Type: Symbolic, dynamic
Variables and equations
90 unknown variables
10 known variables

11 fault variables

Degree of redundancy: 4

94 equations, including 14 differential constraints

II LINKOPING
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Engine model

LINKOPING
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Isolability matrix for the engine

* Only redundancy 4 in the model

« All faults detectable

+ adot — fault fi not isolable from fj

+ A diagonal is the ideal property

« Isolability matrix a simple summary
of single-fault isolability properties

* Not a trivial result at all:

with available sensors — all faults are

(ideally) possible to isolate

fp_af
fw_af
fw_th
fw_c
fe_vol
fw_t
fx_th
fyw_af
fyp_im
fyp_ic

fyT_ic

ity matrix for 'Engine model"

fp_af fw_af fw_th fw_c fc_vol fw_t fx_th fyw_affyp_imfyp_icfyT ic

LINKOPING
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Differential index and isolability analysis

ity matrix for 'Engine model' (integral

52

Question

| What is possible with only observer |
techniques, i.e., no high index

problems

fp_af fw_af fw_th fyw_aflyp_imfyp_ic fyT_ic fw_c fc_vol fw_t fx_th

LINKOPING
Il.u UNIVERSITY
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Redundancy & testable sub-models in the engine model

* Redundancy 4 (4 output sensors)

« Ar =y — Jsolution would give 4 residuals

1y Mpe

54

Test selection

("« Each MSO submodes with n equations, n possible residual generators )
* 4,496 MSO sets: 343,099 candidate residual generators

+ 206 low-index sets: 728 candidate residual generators (208 succeeded)

. 2 T 7
* Dueto the turbine feedback, many more =~ =Tveeeen i T \_* Do not need many to isolate the faults ~ number of faults )
possibilities exist ersooler
+ Inthe model: 4496 MSO sets E # (" ) )
+ 206 with low-index (4.6%) | | ’EU + If models were ideal all tests equally good
- Choose wisely! ~— « Here: make test selection based performance on measured data
e » C code essential for evaluation, Matlab versions just too slow
manfo  Engne o Westeasle e « Simple approach, based on Kullback-Leibler divergences.
Restriction to 4 sensor faults gives 7 selected residuals.
NS J
[ KT REE [ KTREE
55 Residuals, dataset: fyp_ic 56
. . r1: MSO 1650 ; r2: MSO 4012 4 r3: MSO 4017 (*) o
Running residual generators | o I
” T T T T
. r2 (MSO 4012): Fault Free Data WUUFW “‘“’W‘WW o i
+ Sampling rate 1 kHz B m ,,,,,,,,,,,,,,,,,,,,,,,,,, N I 1 msotes0, @ @
08 \ B - ~
¢ Data set 12 minutes with 10 . ﬂm ‘1 r‘ 2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12 wsoorz
measurement signals °er 1 l” ‘ ‘ ‘ M‘ ‘ 1 ‘J{‘ r4: MSO 4018 (*) . rMsoadoe7 o, 16:MSO4075 ()
. 117 ,
» Execution takes about 0.5 sec *l [ ’ \ “‘ \ ‘ I M \‘ w | ‘*\ ‘ ‘ ‘ M , A IJ veose
on this computer o2 ‘ ” ’, ‘ ﬂ “ ‘ ‘ , P} I “ ‘ ‘ \H ‘ \ ‘ JMM J[\ ; /bh M‘W mso 4018 | ole
(= 1400 X real-time) of ‘ “ ‘ | ‘ \‘ w | ‘ ‘ \ LY
. . M \ ‘ U \ ‘ H‘ ‘ U\ 2 4 6 8 10 12 24 6810002 246 810010 wsower| @
+ Simple thresholding based on \ w h\ W u Iy “\ I\ 750 4478 Hmin) Hmin)
false-alarm rate on no-fault o4t | | MSO 4075 | ol e
data 06 MSO 4478 | o
L . 2 4 6 8 10 12 fyw‘,af fyp‘,im fyp‘,ic fyT‘,ic
2 4 6 8 10 12 t [min]
[ KT REE [ KTREE
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Fault Isolation Performance Matrix

. b . . .

P(f;in diagnosis | f))

. fyp_im 746

* Ideally diagonal
 This non-tuned solution works well
+ Some difficulty isolating a faultin =, 0o

the intake manifold pressure sensor

(fyp_im) from a fault in the air-mass

o . . -

flow sensor (fyw_af)
fyw_af Vyp‘,im fyp‘,ic 1y'|",ic

Diagnosed fault

Isolation performance

+ Performance measure

Injected fault

LINKOPING
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Quick look back at the design

« Automated (or close to)
* Modelling (structural and analytical)
« Analysis of diagnosability and simulation properties
+ Test selection
+ Code generation
* No tuning; the designed residuals are nowhere near optimal
«+ Gives a candidate solution; suitable for an engineer to fine-tune

» Important that code is readable, understandable. Equation based models
help here.

LINKOPING
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A Summary and Some Takeaways

* DAE:s are inherent in consistency based diagnosis of dynamic systems

 Graph theoretical tools very useful for diagnosis analysis — can be
implemented in “general purpose” computer support tools

+ Core operation — graph algorithms; efficient for large models
+ Analysis of Modelica models demonstrated via XML export

+ Extract as raw model as possible after flattening

* Manipulation might affect structural results

+ Proven useful for industrial examples — automotive production
engine, Gas Turbine Engines for power production
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Erik Frisk
(erik.frisk@liu.se)

www.liu.se
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