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Model based diagnosis, basic idea
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System

Model
ẋ = g(x, u)

y = h(x, u)

+

faults f(t)

actuators u(t)
observation y(t)

prediction ŷ(t)

residual r(t)
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Industrial applications often more difficult …

• Models are complex, non-linear, includes lookup-tables, to big to handle 
by hand, … 

• Fault isolation, not only fault detection  
• Models are uncertain, which, by definition is not modeled

Modeling languages
• Simulink and Modelica are used (in industry) 

for 
• Mainly simulation 
• optimization 
• not so much for diagnosis analysis and 

design 
• Support for Simulink and Modelica would 

make methods industrially more accessible 
• We in Linköping has thought about this for 

some time; diagnostic methods useful for such 
models  

• Maybe have to compromise between general 
applicability and optimality/guarantees/…
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Models

Simulation

Optimization

A Matlab toolbox — faultdiagnosistoolbox.github.io
4

Fault Diagnosis Toolbox
Download (https://faultdiagnosistoolbox.github.io/download)

Fault Diagnosis Toolbox
Fault Diagnosis Toolbox is a Matlab toolbox for analysis and
design of fault diagnosis systems for dynamic systems, primarily
described by differential-algebraic equations. Key features of the
toolbox are extensive support for structural analysis of large-scale
dynamic models, fault isolability analysis, sensor placement
analysis, and code generation in C/C++ and Matlab.

For a quick introduction, see the use case where an industrial size
example, an automotive engine, is analyzed, C-code for residual
generators is generated, and the resulting diagnosis system is
evaluated on test-cell measurements from our engine laboratory.

If you use this toolbox in your research, please cite any relevant papers of ours, see list of
references for details.

Main designer, coding, and algorithms
Erik Frisk (http://users.isy.liu.se/fs/frisk/) <erik.frisk@liu.se>
Professor, Linköping University, Sweden

Coding and algorithms
Mattias Krysander (http://users.isy.liu.se/fs/matkr/) <mattias.krysander@liu.se>
Associate professor, Linköping University, Sweden

Updates
Material for IFAC World Congress 2017 Tutorial
(https://faultdiagnosistoolbox.github.io/ifacwc-tutorial-slides/)
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Basic approach to diagnosis system design
5

Model

Sub-model 
With 
Redundancy

Residual 
Generator

DAEs and equation based models for diagnosis
• Non-causal models — inherent in the diagnosis problem 
• A signal is known or unknown; it does not matter if it is an input or 

output signal to the system 
•  — unknown, known, and fault signals 

          
• Submodels — inherently differential-algebraic  

x, z, f
F( ·x, x, z, f ) = 0

·x1 = f1(x1, x2, z, f )
·x2 = f2(x1, x2, z, f )
y1 = h1(x1, x2, z, f )
y2 = h2(x1, x2, z, f )
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·x1 = f1(x1, x2, z, f )
y1 = h1(x1, x2, z, f )

Differential index and diagnosis filter design
• Standard definition on differential index is for just-determined models but 

can be directly extended to over-determined models, i.e., models with 
redundancy, 

                              

• If sub-model is low-index, standard observer design techniques can be 
utilized for a fault detector in the form 

                             

• Thus low-index sub-models are of particular interest for detector synthesis

·x1 = f1(x1, x2, z, f )
y1 = h1(x1, x2, z, f )

· ̂x1 = g1( ̂x1, ̂x2, z) + Kgr( ̂x1, ̂x2, z)
0 = ga( ̂x1, ̂x2, z)
r = gr( ̂x1, ̂x2, z)
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Structural models
8

Structural model
Structural model

A structural model only models that variables are related!

Example relating variables: V , i , !

e1 : V = iR(1 + fR) + L
di

dt
+ Kai !

Unknown variables
i ✓ ! ↵ T Tm Tl fR fi f! fT V yi y! yT

e1 X X X X

Coarse model description, no parameters or analytical expressions

Can be obtained early in design process with little engineering e↵ort

Large-scale model analysis possible using graph theoretical tools

Very useful!

Main drawback: Only best case results!

16 / 226
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Structural representation of engine model
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• Incidence matrix of variable 
dependency graph 
• Edges represents connections 
• I/D-edges correspond to 

differentiation and integration

Fundamental algorithmic tool: Dulmage-Mendelsohn decomposition

• Basic tool in many structural 
analysis algorithms 

• Smart reordering or 
rows(equations) and columns 
(variables) 

• Partitions the model into three 
parts 
• Under determined 
• Exactly determined 
• Over determined 

• The overdetermined part with 
redundancy is the one interesting 
for diagnosis
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b0

b1

b2

.

.

.

bn−1

bn

b∞

X0 X1 X2 · · · Xn−1 Xn X∞

M−

M0

M+

Outline of the talk
1. Diagnosability and sensor placement analysis 
2. Testable (sub-)models and detector synthesis 
3. A Modelica perspective 
4. An automotive use-case

11

Presentation	will	be	more	what	than	how

Diagnosability analysis and sensor selection
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Diagnosability analysis - Problem formulation
• Given a dynamic model 
• Q1: Which faults are 

structurally detectable? 
• Q2: What are the structural 

isolability properties of the 
model?

13
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Structural detectability and Dulmage-Mendelsohn

Detectability

A fault f is structurally detectable if ef 2 M+.

b0

b1

b2

. . .

bn�1

bn

b1

X0 X1 X2 · · · Xn�1 Xn X1

M0

M1

M2

...

Mn�1

Mn

M1

f1

f2

Fault f1 not detectable

Fault f2 detectable
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Structurally detectable and isolable faults

• Let  be the equation that is affected by fault  

• A fault  is (structurally) detectable iff  
                 

• Fault  not detectable,  is detectable 

• A fault  is isolable form a fault  iff  
                 

• Take home: Structural diagnosability can be  
determined by a series of  
Dulmage-Mendelsohn decompositions (fast)

efi fi
fi

efi ∈ M+

f1 f2
fi fj

efi ∈ (M∖efj)
+

14

Diagnosability of an engine model
15

14 / 1

Isolability of low-index models - the engine example

Fault isolability
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Isolability with low-index models
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ct
ed

fa
ul

t

Diagnoses
Uses only the structural model, no residual needed. Best case
answers.

A more detailed structure decomposition
16
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Isolability and a more detailed structure decomposition 17
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18Minimal sensor sets and problem formulation

Given:

A set P of possible sensor locations

A detectability and isolability performance specification

Minimal Sensor Set

A multiset S , defined on P, is a minimal sensor set if the specification is
fulfilled when the sensors in S are added, but not fulfilled when any proper
subset is added.

Problem Statement

Find all minimal sensor sets with respect to a required isolability
specification and possible sensor locations for any linear
di↵erential-algebraic model

171 / 226

Define a Partial Order on bi

Partial Order on bi

bi � bj if element (i , j) is shaded

x1 x2 x3 x4 x5

e5

e4

e3

e2

e1

f1

f2

f3

f4

b1

b2

b3

b4

b5

)

b1

b2

b3 b4

b5

Lemma

Let ei measure a variable in bi then

all equal and lower ordered blocks are included in the overdetermined part.
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Define a Partial Order on bi

Partial Order on bi

bi � bj if element (i , j) is shaded

x1 x2 x3 x4 x5

e5

e4

e3

e2

e1

f1

f2

f3

f4

e6

b1

b2

b3

b4

b5

)

b1

b2

b3 b4

b5

Lemma

Let ei measure a variable in bi then

all equal and lower ordered blocks are included in the overdetermined part.
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Basic principle for finding sensors
19

1. A Dulmage-Mendelsohn decomposition (again) 
2. Define a partial order on equations that explicitly identifies variables to 

measure

Example: An electrical circuit

A small electrical circuit with 5 components that may fail

z

C
R2

1

R1L

24

53

v1 = v5 v5 = v2 + v3

i1 = i2 + i5 i1 = i3 + i4 + i5

v1 = z v2 = R1i2

v4 = L
d

dt
i4 i5 = C

d

dt
v5

v3 = v4 v3 = R2i3

10 equations, 2 states, 5 faults, 1 known signal

Possible measurements: currents and voltages

185 / 226

20
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21Example: An electrical circuit

A small electrical circuit with 5 components that may fail

z

C
R2

1

R1L

24

53

v1 = v5 v5 = v2 + v3

i1 = i2 + i5 i1 = i3 + i4 + i5

v1 = z v2 = R1i2

v4 = L
d

dt
i4 i5 = C

d

dt
v5

v3 = v4 v3 = R2i3

10 equations, 2 states, 5 faults, 1 known signal

Possible measurements: currents and voltages

185 / 226

22Examples of results of the analysis

C
R2

1

R1L

24

53

z

Example run 1

Objective Achieve detectability
Possible measurement voltages and currents

7 minimal solutions

{i1} , {i2, i5}, {i3, i5}, {i4, i5}, {i5, v2}, {i5, v3}, {i5, v4}

186 / 226

23Examples of results of the analysis

C
R2

1

R1L

24

53

z

Example run 2

Objective Achieve full isolability
Possible measurement voltages and currents

5 minimal solutions

{i1, i3} , {i1, i4}, {i2, i3, i5}, {i2, i4, i5}, {i3, i4, i5}

186 / 226

24Examples of results of the analysis

C
R2

1

R1L

24

53

z

Example run 3

Objective Achieve full isolability, new sensors may fail
Possible measurement voltages and currents

7 minimal solutions

{i1, i1, i3} , {i1, i1, i4}, {i1, i3, i5}, {i1, i4, i5},

{i2, i3, i5, i5}, {i2, i4, i5, i5}, {i3, i4, i5, i5}
186 / 226
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Testable sub-models and detector synthesis

Model based diagnosis, basic ideas
26

System

Model
ẋ = g(x, u)

y = h(x, u)

+

faults f(t)

actuators u(t)
observation y(t)

prediction ŷ(t)

residual r(t)

�
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−0.5

0

0.5

Model

Sub-model  
with 
Redundancy

Residual 
Generator

27
Basic principle - systematic utilization of redundancy

1 equation, 1 unknown, no redundancy

x = g(u)

r1 = y1 � g(u)

y1 = x r2 = y2 � g(u)

y2 = x r3 = y2 � y1

y3 = x r4 = y3 � g(u)

r5 = y3 � y1

r6 = y3 � y2

Number of possibilities grows exponentially (here
�
n

2

�
minimal

combinations)

Not just y � ŷ

Is this illustration relevant for more general cases?

14 / 226

28
Basic principle - systematic utilization of redundancy

2 equations, 1 unknown, 1 residual generator

x = g(u) r1 = y1 � g(u)

y1 = x

r2 = y2 � g(u)

y2 = x r3 = y2 � y1

y3 = x r4 = y3 � g(u)

r5 = y3 � y1

r6 = y3 � y2

Number of possibilities grows exponentially (here
�
n

2

�
minimal

combinations)

Not just y � ŷ

Is this illustration relevant for more general cases?

14 / 226
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29Basic principle - systematic utilization of redundancy

3 equations, 1 unknown, 3 residual generators

x = g(u) r1 = y1 � g(u)

y1 = x r2 = y2 � g(u)

y2 = x r3 = y2 � y1

y3 = x r4 = y3 � g(u)

r5 = y3 � y1

r6 = y3 � y2

Number of possibilities grows exponentially (here
�
n

2

�
minimal

combinations)

Not just y � ŷ

Is this illustration relevant for more general cases?

14 / 226

30Basic principle - systematic utilization of redundancy

4 equations, 1 unknown, 6 (minimal) residual generators

x = g(u) r1 = y1 � g(u)

y1 = x r2 = y2 � g(u)

y2 = x r3 = y2 � y1

y3 = x r4 = y3 � g(u)

r5 = y3 � y1

r6 = y3 � y2

Number of possibilities grows exponentially (here
�
n

2

�
minimal

combinations)

Not just y � ŷ

Is this illustration relevant for more general cases?
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31Basic principle - systematic utilization of redundancy

4 equations, 1 unknown, 6 (minimal) residual generators

x = g(u) r1 = y1 � g(u)

y1 = x r2 = y2 � g(u)

y2 = x r3 = y2 � y1

y3 = x r4 = y3 � g(u)

r5 = y3 � y1

r6 = y3 � y2

Number of possibilities grows exponentially (here
�
n

2

�
minimal

combinations)

Not just y � ŷ

Is this illustration relevant for more general cases?
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Answer: 
Very	much	so,	but	careful	

analysis	of	DAE	equations	and	
their	properties	is	essential

Basic approach to diagnosis system design
32

Model

Sub-model 
With  
Redundancy

Residual  
Generator

How	do	you	
do	this	step?
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Sketch — how to find all minimal models with redundancy
33

Model

Sub-modelM+

Sub-model

M+

Minimal	model	
with	redundancy

• Do this systematically; efficient way to find all MSO sets — Minimal 
Structurally Overdetermined set of equations 

• A series of Dulmage-Mendelsohn operations — efficient 
• Exponential in model redundancy — extensions for MSO exists to reduce 

solution set

A Modelica perspective

Is Modelica a good language for this kind of analysis

• Started two masters theses together with Saab, Linköping 
• Demonstrate automatic transformation of Modelica models into a format 

where existing fault diagnosis techniques are applicable. 
• Describe how to make non-trivial diagnosis analysis for non-trivial 

Modelica models.
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Use-case: Environmental Cooling System for Gripen Aircraft

• Modelica model 
• Uses standard libraries 
• 1,000 - 10,000 equations
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Modelica and structural analysis

• Flat Modelica model is well suited 
for      structural analysis 

• Structural analysis requires non-
repeated expressions 

• Connecting components give, by 
construction, non-repeated 
expressions if the model is not 
simplified. 

• State-space forms are typically not 
suitable 
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In the environmental control system analyzed in Section 5
this is commonly used to model, for example, operation of
valves.

The analysis methods applied later requires models con-
sisting of only equations and therefore are if-constructs
transformed into general non-linear equations as

x1 = if(c(xc) > 0; g1(x2); g2(x2, x3)) = f(xc, x2, x3)

It is clear that the hybrid character of the system might
get lost in this translation and more detailed approaches
could be used. To our knowledge, this has not yet been
investigated in the context of diagnosis of dynamic sys-
tems, but related results can be found in, e.g., (Benveniste
et al., 2017) that discusses structural analysis of multi-
mode DAE systems.

Finally, a remark on model redundancy is given. By neces-
sity, to simulate a model it has to be exactly determined,
i.e., have equally many equations as there are variables.
On the other hand, to do diagnosis the model has to have
redundancy, i.e., more equations than unknowns. This
is not a contradiction, since the redundancy is provided
by the fact that some variables are known, for example
measurement signals or control signals are known to a
diagnosis system. Therefore, the model defined in Mod-
elica is exactly determined, and then when translating the
model for diagnosis analysis, some values are denoted as
known and then the model has the correct redundancy for
diagnosis analysis.

4. AUTOMATIC PARSING OF MODELICA MODELS

Since available tools for Modelica models mainly aim at
simulation, and in some cases optimization, the model
needs to be transformed into a format where existing
tools for diagnostic analysis is available. In this case,
the Modelica model is transformed into a format for the
Fault Diagnosis Toolbox (FDT) described in (Frisk et al.,
2017b) 1 .

To avoid implementing a full parser for the Modelica lan-
guage, we here utilize the XML export function available
in Dymola, a popular Modelica simulation tool. Unfortu-
nately, the XML format for Modelica models is not yet
standardized and varies from system to system; there are
similar export formats for JModelica (Åkesson et al., 2010)
and OpenModelica (OpenModelica, 2017) and the basic
approach will be similar for those systems. The XML
format is especially suited since there are stable parsers
directly available in many environments, for example Mat-
lab and Python and here the Python parser is used. The
basic process going from a Modelica model to diagnosis
analysis results are shown in Figure 4. It is not possible

Modelica XML	
representation

XML	to	FDT-
format	parser

Analysis	in	
Matlab

Fig. 4. Process going from a Modelica model to diagnosis
analysis results in Matlab using the Fault Diagnosis
Toolbox.

to include a full description of the XML format, but to
illustrate consider the small equation

y = x+ 1 (1)

1 The Matlab based toolbox can be downloaded from http://
faultdiagnosistoolbox.github.io.

The corresponding ModelicaXML code is shown in Fig-
ure 5. The XML is well structured, straightforward to

1 <SimpleEquation>
<LHS>

3 <ComponentReference>
<Reference

5 instanceName=”y”/>
</ComponentReference>

7 </LHS>
<RHS>

9 <Binary Operator=”+”>
<Left>

11 <ComponentReference>
<Reference

13 instanceName=”x”/>
</ComponentReference>

15 </Left>
<Right>

17 <Literal Value=”1”/>
</Right>

19 </Binary>
</RHS>

21 </SimpleEquation>

Fig. 5. Example ModelicaXML code for the equation (1).

interpret, and easy to translate to a suitable format 2 . Our
implemented parser does not cover the complete Modelica
language, but approximate 800 lines of basic Python code
covers enough of the Modelica language to be able to
parse the aircraft cooling system model that makes use
of the standard library in Modelica. The XML export
not only determines the model structure, but also exports
analytical expressions for each model equation.

5. ANALYSIS OF AN AIRCRAFT COOLING SYSTEM

The objective of this section is to show some advanced,
and highly non-trivial, diagnosability analysis results. The
analysis is done directly on the Modelica exported model
and no hand-tuning is done to be able to do the analysis.
All analysis is done using the toolbox (Frisk et al., 2017b).

Fault diagnosis analysis of the air cooling system in Fig-
ure 1 using the model structure shown in Figure 2 is the
main topic of this section. It should be stated that this
analysis is done on a simplified model and the results may
change given a more detailed model. However, the methods
would not change and are equally applicable to a more
detailed model.

As said before there are 22 faults considered in the system.
The faults related to flows are f1, f5, f7, f10, f20, f21;
pressures f2, f3, f6, f11, f12, f16, f18; temperatures f4,
f9, f13, f14, f15, f17, f22; heat exchange e�ciency f8; and
rotational speed f19.

5.1 Fault detectability and isolability analysis

The model contains 15 sensor equations making the dif-
ference between the number of equations and unknown
2 The code for the parser is not yet suitable for general distribution,
but the aim is to include the parser in the FDT toolbox in time for
a possible final verion of the paper.

Modelica XML	
representation

XML	to	FDT-
format	parser

Analysis	in	
Matlab

y = x+ 1

Modelica model with faults
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Straightforward to extend existing components with fault models 

Transformation: .mo → XML → .m
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Dymola A few hundred lines of 
Python-code
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Conditionals

• Very common with conditionals in more complex models 
• Common in the ECS model here 
• Related to hybrid/switched systems 
• Here a simple, and pragmatic approach
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Fig. 3. Small drivetrain example model.

A model structure can also indicate which faults that are
detectable and isolable by using the following definition.
Assume without loss of generality that a fault is included
in only one equation. Let ef denote the equation that
includes fault f .
Definition 4. A fault fi is structurally detectable in a
model M if efi 2 M+ and structurally isolable from fault
fj if

efi 2 (M \ {efj})+

For brevity, no corresponding definitions for di↵erential or
integral causality cases are included. Interested readers are
referred to (Frisk et al., 2012) for more details.

3. MODELICA AND DIAGNOSIS MODELS

This section gives a very brief introduction of the Modelica
language, and the objective is to give enough background
to a reader not previously familiar with Modelica to follow
the presentation. Section 3.2 then discusses properties of
the language that makes it suitable to model for diagnosis.

3.1 Modelica

Modelica is an object-oriented modelling language with
the primary purpose of simulation of complex natural or
man-made systems (Fritzson, 2014). A key characteristic
is that models are equation based and not based on
assignments that defines the computational model used in,
for example, Simulink. Also, Modelica is object-oriented
with well defined class and inheritance concepts which
make it a suitable language for fault diagnosis modeling
as will be briefly discussed below. The class concept also
facilitates a well developed standard library of components
in for example electrical and mechanical systems. As
a small example, the drivetrain model in Figure 3 is
represented in Modelica code (slightly simplified to fit in
article format) by

1 model SimpleDriveTrain
Mechanics.Rotational.Fixed fixed;

3 Mechanics.Rotational.Torque;
Mechanics.Rotational.Inertia inertia2 , inertia 3;

5 Mechanics.Rotational.Spring spring;
Mechanics.Rotational.Damper damper;

7 Blocks.Sources.Sine sine ;
equation

9 connect(inertia2 . flange b , spring. flange a );
connect(spring.flange b , inertia3 . flange a );

11 connect(damper.flange a, inertia2 . flange b );
connect(damper.flange b, fixed. flange b );

13 connect(sine.y, torque.tau);
connect(torque.bearing, fixed . flange b );

15 connect(inertia2 . flange a , torque.flange b );
end SimpleDriveTrain;

Flattening this model, i.e., expanding each component
model into the full underlying equations, here results in
about 35 scalar equations in 35 variables where 5 are
dynamic state variables.

3.2 Modelica Models for Diagnosis

Simulation models are not directly useful for diagnosis
analysis and design, in particular information about faults
need to be added. It is important to stress that it is not
necessary to explicitly model fault instances, e.g., exact
time profile and size of faults, to be able to do relevant
model analysis for diagnosis. For many purposes, which
will be illustrated in detail in Section 5, it is su�cient
to indicate in the model which equations, or components,
that are influenced by a fault. For example, consider a
pressure model for a control volume. The pressure change
is then proportional to the di↵erence in in-flow, Win, and
out-flow,Wout. Then, influence by a leakage flowWleak can
then be modeled as

ṗ = k(Win �Wout +Wleak)

If further information about the leakage flow is available,
e.g., dependence on a leakage area and ambient pressure,
this can also be included in the model but it is not
necessary. Of course, to simulate the model for a particular
fault instance, this is needed, but not for diagnosability
analysis.

Modelica models are well suited for this situation since it is
straightforward to extend existing components with fault
model functionality using the object-oriented functionality
and class inheritance model constructs. This is not some-
thing directly available in languages like Simulink. Another
aspect of Modelica models that make them suitable for
diagnosis purposes is the model inherent lack of causality,
i.e., there need not be any predefined computational paths
or defined inputs and outputs in the model. Key informa-
tion is the model equations and which variables that are
known to the diagnosis system, e.g., measurement signals
and control signals from the control system. Another prop-
erty of Modelica models that make them well suited for
structural analysis is model sparseness, which is shown
in Figure 2. The validity of structural analysis results
relies on that there are no dependencies in the model,
e.g., the same expression appearing in several places in the
model equations. This is very common in, for example, a
state-space model which makes them highly unsuitable for
structural analysis. In Modelica however, the component
view with connected local models avoids this. The price is
typically a larger model, in number of equations, but this is
typically not a problem since structural analysis methods
for diagnosis have good complexity properties with respect
to the number of equations and very large models can be
analyzed e�ciently (Krysander et al., 2008).

Modelica is a versatile language and one construct that
is common in general models, and certainly also models
utilizing the Modelica standard library, is if-statements,
for example

if c(xc) > 0 then
2 x1 = g1(x2);
else

4 x1 = g2(x2, x3);
end if;

x1 = if(c(xc) > 0; g1(x2); g2(x2, x3))

= f(xc, x2, x3)

Model structure

• Gripen Environmental 
Cooling System model 
• 884 equations, 23 

dynamic states 
• 22 faults 
• Degree of redundancy 15  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• Test selection to achieve maximum single fault 
isolability by a Greedy search:  

• 1) Few states 2) Few equations 
• 10 tests with maximum single fault isolability
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Summary
• Straightforward to transfer Modelica models to analysis format (Matlab) 

• Here a limited part of the Modelica language 
• Toolchain via XML representation (unfortunately, not standardized) 
 
 
 

• Possible to obtain non-trivial results 
• Fault detectability, fault isolability, fault detector analysis 

• Saab developers also appreciate: 
• Gain additional insight in model structure 
• Find model weaknesses using fault diagnosis techniques
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Modelica XML	
representation

XML	to	FDT-
format	parser

Analysis	in	
Matlab

An automotive use-case

Volvo development control system 
We can inject, physically and through the 
control system, many relevant faults
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Test cell data

• Volvo production engine 
• EPA HWFET cycle translated into load 

cycle for engine (rpm/torque) 
• (here) 5 data sets: 

• 1. Fault free 
• Sensor faults 

• 2. Intake pressure 
• 3. Air-flow sensor  
• 4. Pressure after intercooler 
• 5. Temperature after intercooler
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>>	model	

Model:	Engine	model	

		Type:	Symbolic,	dynamic	

		Variables	and	equations	
				90	unknown	variables	
				10	known	variables	
				11	fault	variables	
				94	equations,	including	14	differential	constraints	

		Degree	of	redundancy:	4	

Matlab	code

Isolability matrix for the engine

• Only redundancy 4 in the model 
• All faults detectable 
• a dot — fault fi not isolable from fj 
• A diagonal is the ideal property  
• Isolability matrix a simple summary 

of single-fault isolability properties 
• Not a trivial result at all: 

with available sensors — all faults are 
(ideally) possible to isolate
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Differential index and isolability analysis
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Question  
What is possible with only observer 

techniques, i.e., no high index 
problems
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Redundancy & testable sub-models in the engine model

• Redundancy 4 (4 output sensors) 
• A  solution would give 4 residuals 
• Due to the turbine feedback, many more 

possibilities exist 
• In the model: 4496 MSO sets 
• 206 with low-index (4.6%) 

• Choose wisely!

r = y − ̂y
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Test selection
• Each MSO submodes with n equations, n possible residual generators 

• 4,496 MSO sets: 343,099 candidate residual generators 
• 206 low-index sets: 728 candidate residual generators (208 succeeded) 

• Do not need many to isolate the faults ∼ number of faults
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• If models were ideal all tests equally good 
• Here: make test selection based performance on measured data 
• C code essential for evaluation, Matlab versions just too slow 
• Simple approach, based on Kullback-Leibler divergences.  

Restriction to 4 sensor faults gives 7 selected residuals.

Running residual generators

• Sampling rate 1 kHz 
• Data set 12 minutes with 10 

measurement signals 
• Execution takes about 0.5 sec 

on this computer  
(≈ 1400 ⨉ real-time) 

• Simple thresholding based on 
false-alarm rate on no-fault 
data
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Isolation performance

• Performance measure 
 

• Ideally diagonal 
• This non-tuned solution works well 
• Some difficulty isolating a fault in 

the intake manifold pressure sensor 
(fyp_im) from a fault in the air-mass 
flow sensor (fyw_af)

P( fi in diagnosis | fj)
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Quick look back at the design

• Automated (or close to) 
• Modelling (structural and analytical) 
• Analysis of diagnosability and simulation properties 
• Test selection 
• Code generation 

• No tuning; the designed residuals are nowhere near optimal 
• Gives a candidate solution; suitable for an engineer to fine-tune  
• Important that code is readable, understandable. Equation based models 

help here.
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A Summary and Some Takeaways
• DAE:s are inherent in consistency based diagnosis of dynamic systems 
• Graph theoretical tools very useful for diagnosis analysis — can be 

implemented in “general purpose” computer support tools 
• Core operation — graph algorithms; efficient for large models 

• Analysis of Modelica models demonstrated via XML export 
• Extract as raw model as possible after flattening 
• Manipulation might affect structural results 

• Proven useful for industrial examples — automotive production 
engine, Gas Turbine Engines for power production
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