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“Function Architecture’
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Route Management
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Traffic Situation Management,

Dynamically Feasible Trajectories,
Peter Nilsson, Volvo Trucks
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Examples of challenges for TSM

Behaviour planning (Tactical decision) Motion Planning (Trajectory planning)

Predictions of
surrounding
traffic and VRUs
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Vehicle Longitudinal and Lateral Control

Robust

control .
Thrust and Transitions
comfort between
driving modes

Trajectory planning

“Trajectory planning is a generalization of path planning, involved with planning the
state evolution in time while satisfying given constraints on the states and actuation”

Commonly used methods:

* Numerical optimization (e.g. MPC)
* Graph search (e.g. A*¥)
* Neural network (e.g. Nvidia PilotNet)

Trajectory planning example:
left curve, tractor semi-trailer

Distance (m)
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Heavy duty combination vehicles
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Example of motion constraints:

Position of first unit
Position of trailer units (off-tracking)
Roll-over threshold (rearward amplification)

Trajectory planning modelling
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Example of modelling:

* One-track models: x = f(x,u,w)
* Possible states for A-double
* 1stunit (tractor) : vy, vy, Yy
+  2nd unit (trailer) :Ayy, Ay,
* 3rd unit (dolly) :A,, Ay,
*  4th unit (trailer) :Ay3, A3

o
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Vehicle variants and
trajectory planning challenges

Vehicle variant combinatorics:

* Powertrain: = 10”2 variants

¢ Chassis: = 10”3 variants

* Vehicleload = 7 - 120t (incl. different heights to CoG)
* Vehicle units : 1-4

Challenge:

Trajectory planning example:
Roundabout, tractor semi-trailer

Trajectory planning methodology needs to scalable and
robust with respect to variant combinatorics

Vehicle Motion Management,

Road friction estimation,
Mats Jonasson
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Challenges for VMM

Vehicle Longitudinal and Lateral Control Vehicle Motion State Estimation

Smooth and logical
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manual modes tolerant control
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driving comfort
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Reference: [Matthijs Klomp, et al, 2019]

Road condition - road friction

More than 10% of all accidents occur because of slippery conditions*

In the US: yearly approx 500 000 accidents of which 1800 are deadly*

Lateral force f,

ABS activation, friction can be found u = fi

Sy z
Longitudinal force £,

Normal force f. /
force (N) ) / Definitions:
. high friction Low friction 0<u<04
f=nfof £ Mid friction 04<p<07
- High friction 07<u

To estimate friction —
the tyre must at least be

excited to the nonlinear ‘
region at “the bend” ~5% slip (%)

Most driving take place here, not possible to distinguish between low or high
* Reference: [IVSS Road Friction Estimation Part IT]

* Reference: [ US Department of Transportation - Federal Highway Adnﬂnflgtlrgpt%n
** Reference: [Wallman. Tema vintermodell - olycksrisker vid olika vintervaglag]
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Confusion matrix of road friction

Low (snow)

High (dry asphalt)

Low
(snow)

Vehicle speed can be
adapted to friction

False slippery warnings
AD Vehicle will drive
unacceptably slow (not
transport efficient)

True friction

High
(dry asphalt)

AD Vehicle will drive too
fast {not safe)

High frequency of
accidents

Vehicle speed can be
adapted to friction

v

Assumed friction

Reference: [Matthijs Klomp, et al, 2019]

Methods for road friction estimation

Optical measurement device

* Contactless
* Requires a map from
texture to friction

Model-based estimator

* Use the tyre as the

sensor

* Requires knowledge
about tyre physics

Machine learning estimator

» Use features without
knowledge of physics
* Requires training
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State-of-the art model-based estimator

Wheel speeds,

Inertial Meas. Syst.
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Kinetic and
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models

Friction estimator

Tyre forces

Tyre slip
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Features and correlation to friction
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Temperature, GPS, vehicle speed,
surface and road type are
important features for friction
estimation

Features 1...86

* Reference[Roychowdhury, et al, 2018]




Jubilee Symposium 2019: Future Directions of System Modeling and Simulation

Challenges road friction estimation

* General:
* Difficult to identify friction for normal driving (low friction utilization)

* Model-based:
* Model uncertainties for different tyres - the physics is hard to model
* The pre-processing is not accurate enough

* Machine learning:
* Generalizability of machine learning algorithms to various situations
* Generalizability would require large testing

* Training of machine learning algorithms require ground truth - road friction is hard
to measure

Reference [Jonasson, etal] 2018

Motion Devices,

Virtual Verification, Wheel Model,
Bengt Jacobson
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Models for Virtual Verification
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Wheel model as example

104 tonnes, 33 A s

Wheel model use cases

Control Longitudinal vehicle translation Control Longitudinal wheel rotation
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Wheel model, Mechanical challenges

Continuously Renewed  Relative Velocity Dry Friction Rolling Multiple wheels
Friction Surfaces Direction in Brake Resistance
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Conclusions

You have seen:

Automated driving needs
modelling in many aspects:

* TSM and VMM needs Physical
modelling for
“Control/algorithm design”.

* “Virtual verification” drives
Physical modelling, incl.
exchange of models between
organisation.
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