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Process modelling technology

General methodologies & software
systems for the effective & efficient

1. capture of available knowledge in
the form of mathematical models

2. deployment of this knowledge
for engineering throughout the
process lifecycle

2. identification of significant
limitations of/gaps in currently
available knowledge

Challenge: COMPLEXITY
* conceptual
* computational
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Integrated pharmaceutical production
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~ Component model detail
— System scope
~ Model deployment

m Concluding remarks

— Understanding global system behaviour
~ Impact of advances in Data Sciences

m Process modelling technology: where are we now?

m Process modelling technology: the next decade
— Advances in underpinning IT technologies
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Process Modelling Technology:
Where are we now?

Understanding process modelling

Component model detail
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Process & product development
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Model deployment
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Process Modelling

Key drivers

1. Use validated models that are predictive over
sufficiently wide ranges of design & operating parameters
=>» increase reliability/reduce risk in model-based decisions

Component model detail
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=» System scope

Model deployment

Complexity in component-level modelling =

Example: multitubular 3-phase reactors

Multitubular Catalyst-packed tube Catalyst pellet Pore in Product
3-phase catalytic reactor catalyst pellet distribution
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Complexity in component-level modelling =

Example: multitubular 3-phase reactors

Multitubular Catalyst-packed tube Catalyst pellet Pore in

3-phase catalytic reactor catalyst pellet

Shell GTL plant

Ras Lafaan, Qatar

Do hihan,

{

3=

Diameter 8m
Height 22m
Weight 1,200 te

© Man DWE

Process Modelling

Key drivers

1. Use validated models that are predictive over
sufficiently wide ranges of design & operating parameters
=» increase reliability/reduce risk in model-based decisions

Component model detail

3¢
' A E 'I |12 2. Ensure system boundary encompasses
g 4.0, g all important interactions
.- : L. 3 Systemsiope =>» formulate meaningful
s engineering objectives

Model deployment
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Complexity in system-level modelling

Example: integrated gas production & processing networks
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~20 mmSCM/d of gas (170,000 boe/d)
- significant flaring

D. Aluma, N. Thijssen, K.M. Nauta, C.C Pantelides, N. Shah
“Optimize an integrated natural gas production and distribution network”
Gas Processing News, October 2016.

Acknowledgements: Shell, Basrah Gas Company

Integrated gas production & processing network
4 fields + 2 processing facilities + connecting pipelines
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Integrated gas production & processing network

High-level model

@ Network detsi (Network_project 20160124)
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Integrated gas production & processing network=

Detailed plant models

Compressor stations
(n trains) S

z

~300,000 nonlinear equations
77 decision variables
32 constraints
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Dimensions of process modelling’

Component model detail

Model deployment

Systems-based Pharmaceutics . -

Process Systems Engiﬁeering tools & workflows
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Process Modelling
Key drivers

1. Use validated models that are predictive over
sufficiently wide ranges of design & operating parameters
=>» increase reliability/reduce risk in model-based decisions

Component model detail

o
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Lumped|
Process & product development
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> System scope

2. Ensure system boundary encompasses

FEED
Equipment design g
Detall engineering

Opersions 1
Cie

Model deployment

3. Re-use models across process lifecycle
=>» ensure consistency,
reduce cost of model development & maintenance

all important interactions
=>» formulate meaningful
engineering objectives

Model-based engineering along the process lifecycle
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Model-based process operations

E—
Opportunity %L
Exploit ’»
Deep Process Knowledge

Improved quality of results
Reduced cost of deployment

in process operations: review, current status & future needs”, =

Pantelides, C.C. and Renfro, J.G., “The online use of first principles models . 5. gt ‘ =
Comput. chem. Engng, 51, 136-148, 2012.

Level 2: Supervisory Control
Model-Predictive Control
(linear, nonlinear, economic)

Real-time Soft Sensing

Level 1: Regulatory Control T A N
Distributed Control Systems . W

Process Modelling Technology:
the next decade
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Process modelling technology: the next decade
Advances in underpinning IT technologies

Data Computation Algorithms
= Bigger volume = More power = Data-driven modelling
= Wider range = Lower cost = Hybrid modelling
= Higher quality = More flexibility = Surrogate modelling
= More accessible = Data Mining

A set of technologies that have matured over the last couple of decades
...to be usefully applicable to practical problems _—
...across the process & product lifecycle Chemiea Enginewtngs s I e Fnaly2

Process modelling technology: the next decade ..

Understanding global system behaviour.
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Model=based process system analysis

What we currently do: point calculations

Uy V2
Environmental inputs
e External disturbances

* Commercial environment a ©
A
us

KPIs Y1
*  Product quality /

Decisions System performance

* Design e Operability

* Operational Model * Safety
* Environmental impact

U, e Economic performance

U

Model=based process system analysis

What we are really looking for: global system behaviour

Environmental inputs
e External disturbances
¢ Commercial environment

KPIs V1
e Product quality /
Decisions System performance
* Design *  Operability
* Operational Model * Safety
* Environmental impact
U, * Economic performance

e an
L]

"

=

Global sensitivity indices of
output response(s)

M O DEL VALIDATI O N with respect to input factors

Model uncertainty
* Model parameters
* Model structure
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Modelvalidation: quantifying model accuraey

The key part of model development

Model validation cycle

Data
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Model=based process system analysis

What we are really looking for: global system behaviour

Data analytics
Environmental inputs

e External disturbances
¢ Commercial environment

Decisions
* Design
¢ Operational

System
Model

computing

Model uncertainty -
+  Model parameters” @ S
«  Modelstructure ~~~ = @

High-performance
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Global System Analysis of dynamic systems=

KPI at start of process
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Global System Analysis of dynamic systems=

KPI at 5 minutes
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Global System Analysis of dynamic systems=c

KPI at 10 minutes
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Global System Analysis of dynamic systems=

KPI at 15 minutes
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Global System Analysis of dynamic systems=

KPI at 60 minutes
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Global System Analysis of dynamic systems=

KPI at 180 minutes

GPROMS ModelBuilder 6.0.1 (dev) | UncertaintyAnalysis - Response_space - o x
Eile Edit View Activities Tools Window Help
EREHE ERE Xak o 2 @@ ¢-8
————=p T
L% Search, In Vitro Dissolution G 2
& [ UncenaintyAnalysisProject ) i 106000
= [® UncertaintyAnalysis . '..".1%-\.-.' e 108. 500 Title  In Vitro Dissolution
il 3 Original Entities e e 105,000
o Do o, 950000 . X Axis
° 104. 000 =51 ~
= [ System Analysis Group FErT — Variable 33,050
|ik Factor histogram &) 103,000 Axistitle Average partice size
|k Response_histogram - 105,500
Response_space i 102.000 [l update title on variable change
: = ) 101,500
| sampling_space g v oL Y Axis
[ Spaghetti = . -
2 100. 500 = Variable J4Fd v
[ Statistics _table : 750000 100,000 H
[} Problem Description ] 555000 = Display
[k Execution Output 3 oem 520000 [Value attime "
1 52. 5000
2 o.esonoo 58.0000 4 & '« 150000 - min B B M
g 7. 5000
g ugp— Axis title  Fraction dissolved
g oema se. 500
g 5. 0000 [“l update title on variable change
0. #0000 e 5000 Symbol colour
45,0000
54.5000 [ Colaur by variable
=4.0000
e 1a0.000 L50.000 ° 0ose -
Average partice size [pm] [ T~
Atributes
DT o
—

Process modelling technology: the next decade ..

The impact of advances in Data Science
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Big Data + Machine Learning = Models

The mechanics are fairly straightforward...

But how useful is the resulting model?

- Inputs & outputs limited to measured quantities

- Input domains limited by range of data variability
@ python” @) Leatn - Data # Information

Many easily accessible
implementations of
wide range of ML algorithms

Tons of data
now often available

Environmental inputs
+ External disturbances
+ Commercial environment

Big Data

KPIs

-

%}_

= Product quality /

Decisions performance
+ Design = Operability
Machine Learning * Operational - Safety
= Environmental impact
+ Economic performance

Any deterministic computational algorithm
that maps inputs u onto outputs y:

y=f(w

Not necessarily “physics-based” equations

Hybrid data-driven/physics-based modelling"

Environmental inputs
+ External disturbances
+ Commercial environment

KPIs

*  Product quality /
Decisions performance
- Design M) - Qperability
* Operational * Safety

* Environmental impact
* Economic performance

Prior
Scientific &
Engineering knowledge
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Some models are just too computationally complex

for some applications...

= Model may exhibit satisfactory predictive accuracy...

udisag .
suoisag

m ...butis unsuitable for intended application

|euonesadp .

- too large =>» computationally intractable

~ not robust enough =» unreliable performance

g
gFs
353
@288 —
Lol 0
3: @ :
32 b
3 s
.
mrgog 3T -
EIEY
0O o< o 3 C
337 g3
es 2 =>» generate & use surrogate model
o

A surrogate model is...

Environmental inputs
+ External disturbances
* Commercial environment

KPIs
* Product quality /
Decisions performance

+ Design ‘ +  Operability

* Operational * Safety

* Environmental impact
* Economic performance

= an explicit relation between inputs and outputs: y = f(u)
NOT plant data

= ...derived from the results of a (much) more detailed model («pig” or otherwise)

» ..guaranteed to match the predictions of the detailed model

— within a specified accuracy
Usually a

~ for all input combinations within a given domain s npui ket
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Surrogate modelling example: Gas-Qil Separator (GOSP) plant ™

Model structure

Water pumps in parallel &:)

Uz

HP Comp recycle rate | N

LP Comp recycle rate :>

Water pump recycle :>
rate Us
Inlet flowrate —>

V1 N

L—— Power consumption

Vg ¥

E{) HPPT compressor capacity & head margins

Y5 - Y7 . .
:> LPPT compressor capacity & head margins
Vg Y1

:?) Water pump capacity & pressure margins

Vi1 Y313
'—5 GOSP oil and water capacity margins

Vi
L > Qil production

Model Inputs
= 1 integer, uy
= 4 continuous, U, — Us

., Model Outputs

= 14 continuous, Y1 — V14

Surrogate modelling example: Gas-Qil Separator (GOSP) plant ™

Exploration of input space of interest via Global System Analysis

inpuetpace (A1 G4 semsy. et

= 7,200 points =1
— Sampled over input space using
low-discrepancy sequences
~ Integer input handled automatically
= Generated in ~27.5 7
— 4-core desktop machine s
[} WP_pressure_DST (AD1_GSA sensitivity_results) [=[® = =
Distribution Statistics Table
- Variable ‘umli‘ExpenedV;;;eg Std devmtmn‘Mmlmum‘Max\m‘:g
[ WP_pressure FST (AD1_GSA_sensitivity_results) E=REeE )
Factor Sensitivity Table
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Surrogate modelling example: Gas-QOil Separator (GOSP) plant™

Automatically generated surrogate model

Water pumps in parallel &:)

U

HP Comp recycle rate | 2N
u

LP Comp recycle rate :3>
Uy

Water pump recycle
rate Ug
Inlet flowrate

V1

C——) Power consumption

Yo ...

E> HPPT compressor capacity & head margins

Vs Y7 5 X
:> LPPT compressor capacity & head margins

Vg - Y1
:f) Water pump capacity & pressure margins

Y11 Y33
'—b GOSP oil and water capacity margins

m Explicit nonlinear model for water pump pressure ma:gi/

Vio = 1014.12 — 14.5807 X u, — 5.324 X us — 0.0128 X u2 — 0.00753 X u2 — 0.004918 X u, X us — 0.000000334076 X u2 X u?
Vio = 1342.54 — 1.477 X u, — 1.477 X ug — 0.614122 X u2 — 0.00099132 X u2 — 0.00384918 X u, X us — 0.00000099076 X uZ X u?

V1o = 1265.76 — 0.625 X 1, — 4.922 X ug — 057122 X uZ — 0.00099132 X u2 — 0.00384918 X 11, X us — 0.00000099076 X u3 X u

Vi
L > Oil production

Vio = 2343.67 — 2.5107 X u, — 2.922 X ug — 0.6722 X u2 — 0.023289 X u2 — 0.012364 X u, X us

Algorithm automatically
determines form of

nonlinear functions

for u; =1
for u; =2
for uy; =3
foru; =4

A. Cozad, N.V. Sahinidis, D.C. Miller, AIChE J., 60, 2211-2227 (2014); Z.T. Wilson, N.V. Sahinidis, Comput. chem. Engng., 106, 785-795 (2017)

Surrogate modglling: key enabling technology

Model detail/
predictive accuracy

o= 78 Pe

P
- as "W
g L TINSTOSSN

for Process Modelling in'the next decade"

-

~

Computational
complexity
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Process madelling: current perspectives, future visions

In conclusion...

Process modeling technology: current perspectives

We’ve come a long way!

Ethylbenzens

Process modelling ~1990s

Benzene Rich Recycle

Benzene

Diefhylbenzene Rich Recydle

Key contributing factors
= Declarative modelling languages

= Advances in computation
= Algorithms
= Hardware

=  Multipurpose modelling environments — not just “simulators”

Page 23
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Process modelling technology: future visions »

From Models to Digital Applications

Level 4: Supply Chain Planning
Production & inventory management
Multi-plant coordination

/ Level 3: Plant Operations Management

Nata Rernnciliatinn

Challenge
A unified declarative framework _ |
for Digital Applications ERRXEERE

Model-Predictive Control
(linear, nonlinear, economic)
. Real-time Soft Sensing

Level 1: Regulatory Control e R
Distributed Control Systems - W

Imperial College
London

Thank you for your attention!

ENG © 006D B
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