
Recent 
Advancements in 
Differential Equation 
Solver Software
CHRIS RACKAUCKAS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

1

Jubilee Symposium 2019: Future Directions of System Modeling and Simulation



DifferentialEquations.jl: 
Research Platform for Production
 ~300 methods available, including wrappers to C/Fortran methods

 Platform for reproducible research and benchmarking
 MPI+GPU Compatibility
 Implicit, IMEX, multirate, symplectic, exponential integrators, etc.
 Adaptive high order methods for stochastic differential equations
 Stiff state-dependent delay differential equation discontinuity tracking
 Mix in Gillespie simulation (Continuous-Time Markov Chains)
 Automatic sparsity detection and optimization
 Arbitrary code injection through callbacks
Native Julia methods routinely benchmark as one of the fastest libraries in 
most categories (caveat category: large (>1000) ODE/DAE systems)

2



3 Major 
Areas

Neural Differential Equations

A Hackable Model Compiler 
(ModelingToolkit.jl)

Improvements to basic 
numerical methods

3



There is a new field 
that is merging AI and 
domain-specific 
modeling: Scientific ML/AI

SCIENTIFIC AI: DOMAIN MODELS WITH INTEGRATED MACHINE LEARNING 
HTTPS://WWW.YOUTUBE.COM/WATCH?V=FGFX8CQHDQA
THE ESSENTIAL TOOLS OF SCIENTIFIC MACHINE LEARNING
HTTP://WWW.STOCHASTICLIFESTYLE.COM/THE-ESSENTIAL-TOOLS-OF-
SCIENTIFIC-MACHINE-LEARNING-SCIENTIFIC-ML/

4

https://www.youtube.com/watch?v=FGfx8CQHdQA
http://www.stochasticlifestyle.com/the-essential-tools-of-scientific-machine-learning-scientific-ml/


What is the 
mathematical structure 
of machine learning?

5



Neural Networks = Nonlinear 
Regression
 Polynomial: 𝑒𝑒𝑥𝑥 = 𝑎𝑎1 + 𝑎𝑎2𝑥𝑥 + 𝑎𝑎3𝑥𝑥2 + ⋯

 Nonlinear: 𝑒𝑒𝑥𝑥 = 1 + 𝑎𝑎1 tanh 𝑎𝑎2𝑥𝑥
𝑎𝑎3𝑥𝑥−tanh 𝑎𝑎4𝑥𝑥

 Neural Network: 𝑒𝑒𝑥𝑥 ≈ 𝑊𝑊3𝜎𝜎 𝑊𝑊2𝜎𝜎 𝑊𝑊1𝑥𝑥 + 𝑏𝑏1 + 𝑏𝑏2 + 𝑏𝑏3. Train the 
weights (𝑊𝑊, 𝑏𝑏)

6



Universal 
Approximation 

Theorem

NEURAL NETWORKS CAN GET 𝜖𝜖 CLOSE TO ANY 
𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑚𝑚 FUNCTION 
Neural Networks Overcome “the curse of 
dimensionality”

7



Not Quite a Black Box:
Convolutional Neural Networks 
Encode (Spatial) Structure

8

A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way, Sumit Saha



Now let’s generalize 
this idea to scientific 
structures

9



Latent (Neural) 
Differential 
Equations

NEURAL ORDINARY DIFFERENTIAL EQUATION: 
𝑢𝑢′ = 𝑓𝑓(𝑢𝑢, 𝑝𝑝, 𝑡𝑡)

LET 𝑓𝑓 BE A NEURAL NETWORK



Training a 
neural 
differential 
equation:
DiffEqFlux.jl

11

Solve the differential equation

Compute the gradient of 
the solution with respect to 
the parameters defining the 
neural network

Adjoint sensitivity 
analysis
Differentiable 
programming

Update the neural network and repeat



Automatically Learning the Model
12



The real power comes from 
incorporating known structure 
into the ML framework
(Mixed Neural Differential 
Equation)

13



Mix Neural Networks Into DiffEqs!

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑝𝑝1𝑦𝑦 + 𝑝𝑝2𝑥𝑥

Fit the “mixed neural differential equation” 
using the same method!

14



ML-Assisted Model Discovery

The chemical reactions imply an evolution of:

?

?

?

? ?

Data

?

15



Biologically-Informed Neural 
Network

NN(2)

NN(3)

NN(4)

?

Data
Find neural networks so the model matches the data

16



Interpretability of 
Neural Differential Equations

Analyze the 
Jacobian/Hessian 

17

Data-Efficient Physics-Embedded Machine Learning



Nonlinear Optimal Control as a 
Mixed Neural ODE

 𝑥𝑥′ = 𝑓𝑓(𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 , 𝑡𝑡)

 Minimize 𝐽𝐽 = Φ 𝑥𝑥 𝑡𝑡0 , 𝑡𝑡0, 𝑥𝑥 𝑡𝑡𝑓𝑓 , 𝑡𝑡𝑓𝑓 + ∫𝑡𝑡0
𝑡𝑡𝑓𝑓 𝐿𝐿 𝑥𝑥 𝑡𝑡 ,𝑢𝑢 𝑡𝑡 , 𝑡𝑡 𝑑𝑑𝑑𝑑

 Example: 𝑥𝑥(𝑡𝑡) is the location of an automated drone, 𝑢𝑢 𝑡𝑡 is the 
controller, find what the controller should be such that the vehicle 
goes to the right place for the least energy.

 Neural ODE Approach: Make 𝑢𝑢(𝑡𝑡) be a neural network. Find the 
neural network s.t. 𝑥𝑥 𝑡𝑡 correctly evolves

18



Neural PDEs for Acceleration of 
Navier-Stokes

 Boussinesq Equations (Navier-Stokes) are used in 
climate models

 People attempt to solve this by “parameterizing”, i.e. 
getting a 1-dimensional approximation through 
averaging:

where 𝑤𝑤′𝑐𝑐𝑐 is unknown.

 Instead of picking a form for 𝑤𝑤′𝑐𝑐𝑐(the current 
method), replace it with a neural network and learn it 
from small scale simulations! Discretize. Result: Neural 
ODE.

19



Solving 1000 dimensional PDEs: 
Hamilton-Jacobi-Bellman, 
Nonlinear Black-Scholes

 Semilinear Parabolic Form (Diffusion-
Advection Equations, Hamilton-Jacobi-
Bellman, Black-Scholes)

 Make (𝜎𝜎𝑇𝑇∇u) 𝑡𝑡,𝑋𝑋 a neural network.
 Solve the resulting SDEs and learn 𝜎𝜎𝑇𝑇∇u

via:

Simplified:
 Transform it into a Backwards SDE.
 The unknown is a function!
 Learn the unknown function via neural 

network.
 Once learned, the PDE solution is known.

Solving high-dimensional partial differential 
equations using deep learning, 2018, PNAS, 
Han, Jentzen, E

20



Represent 1000 dimensional PDEs 
as a 1000 dimensional neural SDE

 Solving the PDE = training the neural network
 As a neural SDE, we can solve with higher order (less neural network 

evaluations), adaptivity, etc.

21

Submitting to AISTATS 2020



DiffEqFlux.jl

Unified
Framework

for
Scientific ML

The first (mixed) Neural Differential Equation solver. 
Supports:
 Neural ODEs
 Neural SDEs (SDDEs)
 Neural DAEs
 Neural DDEs
 Stiff Equations
 Hybrid Equations
 Adjoints via reverse-mode AD and adjoint 

sensitivity analysis
 Data-Efficient and Physical Machine Learning

22



ModelingToolkit: 
An Open Source 
Compiler + IR for 
Models and 
Transformations

23



Defining Principles

 A structured and documented IR 
for describing models

 “Model transforms” are compiler 
passes IR -> IR

 Extendable high level “context” 
system

 Let others write domain-specific 
languages on top
 DSLs should not have to define 

simplification, differentiation, etc!

24



Automatically 
convert 
numerical 
functions to 
symbolic

25



Current Research

 Components and Pantelides for 
large DAE systems

 An extendable framework for 
automated PDE discretizations

 Methods for (nonlinear) model order 
reduction

 Transformations for SDEs

 Tearing and other structural 
optimizations

26



Now assume the form 
of the differential 
equation is “good”
CAN WE IMPROVE THE SOLVERS?

27



Non-Stiff Methods 
are still being 
improved!

28



The Structure of a Runge-Kutta
Method

29



Ways to Judge an RK Method
Optimization of next order coefficients Stability

30



Dormand-Prince 5th Order (1980) 31



Advancements since 2010

Recent methods, Tsit5 and 
Vern#, reduce the number 

of assumptions made in 
coefficient optimization, 
leading to more optimal 

solutions (>2010)

Methods specialized for 
wave equations, low-

dispersion results, extended 
monotonicity equation for 
PDEs (SSPRK), etc. are hot 
topics in new high order 

Runge-Kutta methods (2017)

32



100x100 Linear ODEs 33



3-Body Problem (CVODE_Adams
fails)

34



And parallelism is 
not well exploited!

35



Pervasive Allowance of Within-
Method parallelism through Julia

Zero GPU/Distributed message passing done by the solver!

36



Multithreading Extrapolation

Simultaneous
Euler stepping
of different
step sizes 

37

Ketcheson, 2016



Parallel Runge-Kutta methods

5 stages
But only 3 steps in parallel

38



DiffEqGPU.jl: Automatic GPU-based 
parameter parallelism of high level 
code

 Demonstrates a 12x-90x speedup over 
multithreaded ODE solves by using just 1 
GPU.

 Handles stiff and non-stiff hybrid 
ODEs/SDEs/DDEs/DAEs with adaptive 
timestepping.

 Support coming soon:
 Multiple GPUs
 Mixed with multithreading/distributed

 Result: take existing hybrid ODE simulations 
written in Julia and automatically 
GPU+distributed+multithreaded parallelize 
it for the user!

 Requires relatively small systems (<50 DEs?)

39



Stiff ODEs: Fall of the BDF
WHAT’S COMING TO GET GEAR’S METHOD.

40



Evolution of Gear’s Method

 GEAR: Original code. Adaptive order adaptive time via 
interpolation
 Lowers the stability!

 LSODE series: update of GEAR
 Adds rootfinding, Krylov, etc

 VODE: Variable-coefficient form
 No interpolation necessary.

 CVODE: VODE rewritten in C++
 Adds sensitivity analysis

41



42



Problems with BDF

BDF is a multistep method

Needs “Startup Steps”

Inefficient with events

It is only L-stable up to 2nd order

Has high truncation error coefficients

Implicit

Requires good step predictors

43



Orego Benchmarks 44



Rosenbrock Methods

Aren’t new! (ode23s)

Can fix a lot of problems:

Exploit sparse factorization

No step predictions required

Can optimize coefficients to high order

Con: Needs accurate Jacobians

Answer: AD (or symbolic)

45



ODE Problems can fall into different 
classes

Physical Modeling
SecondOrderODEProblem(f,u0,tspan,p)

 𝑢𝑢′′ = 𝑓𝑓(𝑢𝑢, 𝑝𝑝, 𝑡𝑡)

PartitionedODEProblem(f1,f2,v0,u0,tspan,p)

 𝑣𝑣′ = 𝑓𝑓1(𝑡𝑡,𝑢𝑢)

 𝑢𝑢𝑢 = 𝑓𝑓2(𝑣𝑣)

HamiltonianODEProblem(H,p0,q0,tspan,p)

 𝐻𝐻(𝑝𝑝, 𝑞𝑞)

PDE Discretizations

SplitODEProblem(f1,f2,u0,tspan,p) (IMEX) 

 𝑢𝑢′ = 𝑓𝑓1 𝑢𝑢, 𝑝𝑝, 𝑡𝑡 + 𝑓𝑓2(𝑢𝑢, 𝑝𝑝, 𝑡𝑡)

SemilinearODEProblem(A,f2,u0,tspan,p)

 𝑢𝑢′ = 𝐴𝐴𝐴𝐴 + 𝑓𝑓(𝑢𝑢, 𝑝𝑝, 𝑡𝑡)

LocalSemilinearODEProblem(A,f2,u0,tspan,p)
𝑢𝑢′ = 𝐴𝐴𝐴𝐴 + 𝑓𝑓. (𝑢𝑢, 𝑝𝑝, 𝑡𝑡)

SDIRK Methods can treat half of the problem as explicit, 
decreasing the nonlinear solver cost

46



Exponential Runge-Kutta

Explicit methods for stiff equations

Small enough: Build matrix exponential

Large enough: Krylov exp(t*A)*v

Crossover Question: Can we automatically divide equations for IMEX/Multirate methods?

47



Current Results (DiffEqBenchmarks.jl)

 <20-30 stiff ODEs = High order Rosenbrock
 <2000 ODEs = Optimized SDIRK Methods
 >2000 (general) ODEs = SUNDIALS BDF 

 Stabilized Explicit methods in PDE contexts

 IMEX methods when a split is known

 …

Ongoing research to crack the code for more types of systems

48



Putting it together for users: 
polyalgorithms

49



Conclusion

 Today you can solve differential equations
 Tomorrow you will likely be able to solve them much faster

 Neural-embedded methods for simplifying models

 A compiler for researching transformations methods in context

 Ongoing improvements to numerical methods

50



Students, want a paid summer position? 
 Contact me for Google Summer of Code development. 
 No Julia experience is required. 
 https://julialang.org/soc/ideas-page

51

Industry interested in this research?
 Contact me to help fund development in JuliaDiffEq!
 We need industry sponsors/interest for CSSI grants, please let us know


	Recent Advancements in Differential Equation Solver Software
	DifferentialEquations.jl: �Research Platform for Production
	3 Major Areas
	There is a new field �that is merging AI and domain-specific modeling: Scientific ML/AI
	What is the mathematical structure of machine learning?
	Neural Networks = Nonlinear Regression
	Universal Approximation Theorem
	Not Quite a Black Box:�Convolutional Neural Networks Encode (Spatial) Structure
	Now let’s generalize this idea to scientific structures
	Latent (Neural) Differential Equations
	Training a neural differential equation:�DiffEqFlux.jl
	Automatically Learning the Model
	The real power comes from incorporating known structure �into the ML framework�(Mixed Neural Differential Equation)
	Mix Neural Networks Into DiffEqs!
	ML-Assisted Model Discovery
	Biologically-Informed Neural Network
	Interpretability of �Neural Differential Equations
	Nonlinear Optimal Control as a �Mixed Neural ODE
	Neural PDEs for Acceleration of Navier-Stokes
	Solving 1000 dimensional PDEs: Hamilton-Jacobi-Bellman, Nonlinear Black-Scholes
	Represent 1000 dimensional PDEs as a 1000 dimensional neural SDE
	DiffEqFlux.jl��Unified�Framework�for�Scientific ML
	ModelingToolkit: An Open Source Compiler + IR for Models and Transformations
	Defining Principles
	Automatically convert numerical functions to symbolic
	Current Research
	Now assume the form of the differential equation is “good”
	Non-Stiff Methods are still being improved!
	The Structure of a Runge-Kutta Method
	Ways to Judge an RK Method
	Dormand-Prince 5th Order (1980)
	Advancements since 2010
	100x100 Linear ODEs
	3-Body Problem (CVODE_Adams fails)
	And parallelism is not well exploited!
	Pervasive Allowance of Within-Method parallelism through Julia
	Multithreading Extrapolation
	Parallel Runge-Kutta methods�
	DiffEqGPU.jl: Automatic GPU-based parameter parallelism of high level code
	Stiff ODEs: Fall of the BDF
	Evolution of Gear’s Method
	Slide Number 42
	Problems with BDF
	Orego Benchmarks
	Rosenbrock Methods
	ODE Problems can fall into different classes
	Exponential Runge-Kutta
	Current Results (DiffEqBenchmarks.jl)
	Putting it together for users: polyalgorithms
	Conclusion
	Students, want a paid summer position? 



